Identification of a novel immune checkpoint regulator and potential therapeutic antibody target in oncology
نویسندگان
چکیده
Antibody blockade of immune checkpoint regulators such as PD-1 and CTLA4 has been shown to be an effective cancer treatment strategy; however, a large percentage of patients still do not respond to existing therapies. Discovery of additional immune checkpoints and development of antibody therapeutics against them are likely critical to address this unmet patient need. We generated a comprehensive library of essentially all human extracellular proteins and screened proteins in this library in vitro and in vivo for the ability to modulate immune responses or tumor growth. As a result of these screens, we identified a number of novel immune checkpoints. One such protein, referred to herein as Novel Checkpoint 1, was originally identified through its inhibitory activity on anti-CD3-stimulated human T cell proliferation. To confirm its activity as an immune checkpoint, we demonstrated that the native protein expressed on an antigen-presenting cell line could inhibit antigen-stimulated CD8+ T cell activation. Furthermore, blocking antibodies against this protein relieved the inhibition. This inhibitory activity translated to a murine system, as the mouse ortholog and blocking antibodies behaved similarly in murine T cell activation assays. Overexpression of the protein in mouse syngeneic tumor models resulted in increased tumor growth, consistent with inhibition of anti-tumor immune responses. Novel Checkpoint 1 is expressed primarily on activated and regulatory T cells in humans and mice – an expression profile similar to those of PD-1 and CTLA4. Additionally, it is expressed on 40-70% of tumor-infiltrating T cells while only on 1015% of circulating T cells from those tumor-bearing mice. We are currently evaluating the anti-tumor activity of blocking antibodies in mouse tumor models, either alone or in combination with other checkpoint blocking antibodies. Taken together, we believe that these data demonstrate that this newly discovered protein may act as a checkpoint regulator in tumors and that blocking antibodies against it have potential as a novel cancer immunotherapeutic.
منابع مشابه
GPI-Anchored Fibromodulin as a Novel Target in Chronic Lymphocytic Leukemia: Diagnostic and Therapeutic Implications
Background: We have previously reported the aberrant expression of Fibromodulin (FMOD) in patients with chronic lymphocytic leukemia (CLL). Although FMOD has been considered as a cytoplasmic or secretory protein, we discovered the cell surface expression of FMOD in leukemic B cells via anchoring with glycosylphosphatidylinositol (GPI). Objective: To evaluate FM...
متن کاملRationale for targeting the immune system through checkpoint molecule blockade in the treatment of non-small-cell lung cancer
BACKGROUND Treatments of non-small-cell lung cancer (NSCLC)-particularly of the squamous subtype-are limited. In this article, we describe the immunomodulatory environment in NSCLC and the potential for therapeutic targeting of the immune system through cytotoxic T-lymphocyte antigen 4 (CTLA-4) and programmed death-1 (PD-1) immune-checkpoint pathway blockade. MATERIALS AND METHODS We searched...
متن کاملConstruction of Human Recombinant ScFv Phage Libraries from the Advanced Stages of Breast Carcinoma Patients
Advances in the field of antibody engineering, and the emergence of powerful screening technology such as filamentous phage display allowed to generate fully human antibodies with high affinities against virtually any desired target from immune or even naIve human repertoires. As a result, the immunogenicity problems related to applications of nonhuman based recombinant antibodies as therapeuti...
متن کاملIdentification of a Novel Tumor-Binding Peptide for Lung Cancer Through in-vitro Panning
Tumor-targeted therapies are playing growing roles in cancer research. The exploitation of these powerful therapeutic modalities largely depends on the discovery of tumor-targeting ligands. Phage display has proven a promising high throughput screening tool for the identification of novel specific peptides with high binding affinity to cancer cells. In the present study, we describe the use of ...
متن کاملIdentification of a Novel Tumor-Binding Peptide for Lung Cancer Through in-vitro Panning
Tumor-targeted therapies are playing growing roles in cancer research. The exploitation of these powerful therapeutic modalities largely depends on the discovery of tumor-targeting ligands. Phage display has proven a promising high throughput screening tool for the identification of novel specific peptides with high binding affinity to cancer cells. In the present study, we describe the use of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2015